Глава 4.

ТЕХНОЛОГИИ ВОЗДЕЛЫВАНИЯ И МЕТОДЫ РАЗМНОЖЕНИЯ

УДК 631.524:581.526

doi: 10.31360/2225-3068-2019-71-154-162

АДАПТИВНЫЙ ПОТЕНЦИАЛ СОРТООБРАЗЦОВ УНАБИ В УСЛОВИЯХ ВОЛГОГРАДСКОЙ ОБЛАСТИ

Семенютина В. А., Свинцов И. П.

Федеральное государственное бюджетное научное учреждение «Федеральный научный центр агроэкологии, комплексных мелиораций и защитного лесоразведения Российской академии наук», г. Волгоград, Россия, e-mail: VSem89@mail.ru

Одним из экономически важных растений для юга России является унаби (*Zizyphus jujuba*), который проходит экологическое испытание в Волгоградском регионе. Цель – выявление экологических диапазонов распространения при проведении испытания сортообразцов унаби. Объекты исследований – сорта *Z. jujuba*, полученные из ВНИИЦиСК (крупноплодные – 'Та-ян-цзао', 'Южанин'; среднеплодные – 'Дружба', 'Финик'; мелкоплодные – 'Сочинский', 'Темрюкский'). Установлено, что рост, формирование габитуса и побегообразовательная способность изученных растительных организмов *Z. jujuba* в условиях экспериментальных посадок (Волгоград, 48°37'–48°38' с. ш. и 44°12'–44°13' в. д.; Камышин, 50°4'–50°5'с. ш. и 45°22'–45°23' в. д.) ограничивают засухи, минимальные/максимальные (–37/+40,1 градусы) температуры. По репродуктивным способностям, толерантности к низким температурам и степени засухоустойчивости установлено преимущество сортообразцов с мелкими плодами. На основе обобщения материалов и гистограмм распределения групп признаков возможен прогноз расширения ареалов при создании искусственных экосистем.

Ключевые слова: экологическая пластичность, пределы толерантности, *Z. jujuba* (унаби), формовое разнообразие, экологические факторы, ареал распространения, рост и развитие, репродуктивная способность.

Актуализируются задачи использования многоцелевых видов (мелиоративных, плодовых, лекарственных). К ним относятся кустарниковые растения унаби (Z. jujuba), которые способны обеспечивать население питательными плодами и являются в этом отношении экономически важными растениями.

Одним из экономически важных растений для юга России является *Zizyphus jujuba*. Его родина Китай, где в последнее время идет быстрое развитие и расширение площадей возделывания и составляет 29,6 % от общей площади [7, 8]. *Zizyphus jujuba* культивируется по всей территории своего естественного ареала и вне его, особенно в

Китае [8]. FAO разработаны программы в целях содействия устойчивому развитию площадей их распространения [11].

В XXI веке наблюдаются рост популярности и продвижение унаби в более северные регионы. Это древнейшее растение является наиболее важным коммерческим древесным растением многоцелевого назначения [12–14].

Zizyphus jujuba введён в культуру более чем в 30 странах. В России выращивается в условиях Краснодарского и Ставропольского краев, республики Крым. Проходит экологическое испытание в Волгоградском регионе. Культура нуждается в большом количестве света, что подтверждается более ранним созреванием хорошо освещенных побегов, в периферийных частях кроны плодов гораздо меньше [3, 6].

Некомфортный диапазон факторов вызывает стресс (высокие/низкие температуры, высокая концентрация солей и др.). Трудно определить оптимальное значение фактора с достаточной точностью, на что указывают многие исследователи. Особенно это касается солеустойчивости растительных организмов [1–3].

Общее экологическое значение в природе имеет действие ограничивающих факторов, как при минимальных, так и максимальных их значениях. Многие авторы в своих работах указывают на то, что генотипы мелкоплодных сортов $Zizyphus\ jujuba$ хорошо адаптируются к климатическим и почвенным условиям [10, 14, 15].

Цель – выявление экологических диапазонов распространения при проведении испытания сортообразцов унаби (*Zizyphus jujuba*) в Волгоградском регионе.

Методика. Исследования растений *Z. jujuba* в Волгоградском регионе проводятся с 1998 г. Сортовые растения получены из Всероссийского НИИ цветоводства и субтропических культур. Объекты исследований — сорта *Z. jujuba*, (крупноплодные — 'Та-ян-цзао', 'Южанин'; среднеплодные — 'Дружба', 'Финик'; мелкоплодные — 'Сочинский', 'Темрюкский').

Территория района экспериментальных работ (Волгоградская область) расположена в центре Нижнего Поволжья. Ограничивающими факторами для субтропических растений в Волгоградском регионе являются засухи, недостаточное увлажнение, низкие зимние температуры. Климат региона исследований по характеристикам находится между северо-востоком Средиземноморья и континентальными районами Азии. Климат Волгоградской области имеет некоторое сходство с климатом Крыма и районами юго-западной Азии (границами естественного ареала унаби) [3].

Особенности участков оценены в ходе обследований. Описание профиля — методом Захарова; отбор образцов по ГОСТ 26423-85, 26428-85, 26213-91 «Почвы». Почвенные образцы на влажность отбирали в трёх точках и трёх повторностях, глубиной до двух метров с интервалами двадцать сантиметров.

Определение солеустойчивости растительных организмов проводили в почвенной культуре (фон – Cl⁻ засоление). Использовали для засоления:

- 1) p-p NaCl с 0,1%-ным содержанием ионов хлора,
- 2) p-p-0.2%.

Влажность почвы — семьдесят процентов от полной влагоёмкости. Выносливость к низким температурам определялась в полевых и лабораторных (КХТВ-0,22) условиях. Фазы развития растительных организмов фотофиксировались.

Зимостойкость в открытом грунте оценивалась балльной шкалой. Для выявления пределов толерантности сортообразцов *Z. jujuba* в возрастные периоды исследовались: отношение к стресс-факторам и повреждения в зимний (по зимостойкости) и летний (по засухоустойчивости) периоды.

Влияние экологических диапазонов распространения растительных организмов ($48^{\circ}37' - 48^{\circ}38'$ с. ш.; $44^{\circ}12' - 44^{\circ}13'$ в. д.) фиксировалось по способности к репродукции.

Оценка устойчивости мембран растительных тканей определялась по выходу электролитов (ионов) с использованием прибора Mettler Toledo Conductivity. Экспериментально сравнивались листья образцов растений, подверженных стрессу с неадаптированными листьями (засуха/контроль).

Анализ структуры эдафической, климатической среды и экологические параметры показателей древесных компонентов проводили синхронно во временном отрезке.

Объективность результатов подтверждена пакетной обработкой и отчётностью показателей критериев кластеров *Z. jujuba* по евклидовым расстояниям и распределением кластерных признаков по шкалам категорий. Обработка данных – MS Excel 2011, STATISTICA 8.0.

Результаты. Важно знать степень толерантности растений к высоким и низким температурам для прогнозирования их адаптивной устойчивости и выявления экологических диапазонов распространения.

Морозостойкие сорта *Z. јијиba* представляют научный и практический интерес для малолесных регионов [4, 5]. Почвы участка ($50^{\circ}4'-50^{\circ}5'$ с. ш. и $45^{\circ}22'-45^{\circ}23'$ в. д.) экспериментальных посадок характеризуются небольшим содержанием гумуса (с 0,57 до 1,15 %). Валовое содержание азота и фосфора небольшое, калия – средняя обеспеченность, рН = 7,2. Засоление почв отсутствует. Почвы экспериментального участка станции (г. Камышин; $48^{\circ}37'-48^{\circ}38'$ с. ш. и $44^{\circ}12'-44^{\circ}13'$ в. д.) более или менее однородные, каштановые. По физическим свойствам легкосуглинистые. Содержание гумуса в верхнем горизонте почвенного профиля (A_0) составило 2,28 %, N-0,17 %, $P_2O_5-0,12$ %, $K_2O-1,0$ %. Установлен состав водорастворимых солей слоя A_0 каштановой почвы ($48^{\circ}37'-48^{\circ}38'$ с. ш. и $44^{\circ}12'-44^{\circ}13'$ в. д.): $HCO_3^{-}(0,032^{\circ})$, $CI^{-}(0,002^{\circ})$, $SO_4^{-2}(0,030^{\circ})$, $Ca^{2+}(0,011^{\circ})$, $Mg^{2+}(0,004^{\circ})$, $Na^{+}(0,006^{\circ})$, $K^{+}(0,001^{\circ})$. Влажность почвы изменялась в сторону уменьшения с июня по август.

Выявлено, что многолетние данные по фенологии растительных организмов *Z. јијиba* и изучение динамики их прохождения являются регламентом для выявления показателей их экологической пластичности.

Развитие взрослых и молодых растений отличается большей продолжительностью роста и величиной прироста у молодых растений. Установлена связь прироста побегов с гидрологическим режимом эдафических условий, которая отражает экологические закономерности роста (табл. 1).

Таблица 1 Особенности динамики ростовых процессов Z. jujuba

	Прирост, % (общий запас влаги в 2-х м слое почвы, мм)				
Растительные организмы	май-июнь	июль	август- сентябрь	средний за вегетационный период, <i>м</i>	
С крупными плодами <i>Та-Ю</i> *	23,3(164) 483**	54,8(148)	21,9(134)	$0,50 \pm 0,03$	
	18,5(247) 475**	58,0(215)	23,5(160)	$0,80 \pm 0,04$	
	23,0(170) 415**	55,2(141)	21,8(130)	$0,39 \pm 0,05$	
Со средними плодами Д-Ф *	20,2(164) 400**	54,3(148)	25,5(134)	$0,43 \pm 0,06$	
	18,2(247) 409**	57,4(215)	24,4(160)	$0,73 \pm 0,03$	
С мелкими плодами <i>C-T</i> *	21,9(164) 380**	50,8(148)	27,3(134)	$0,33 \pm 0,01$	
	18,0(247) 372**	55,5(215)	25,5(160)	$0,62 \pm 0,02$	
	21,0(170) 393**	51,6(141)	27,4(130)	0,41 ±0,04	

Примечание: * – Та-Ю – 'Та-Ян-Цзао' – 'Южанин', Д-Ф – 'Дружба' – 'Финик', С-Т – 'Сочинский' – 'Темрюкский' ** – Σ температур (фаза роста побегов, начало)

В условиях засушливого региона растения унаби — листопадный кустарник, с красивой негустой ажурной раскидистой кроной, снижают показатели прироста побегов в высоту с восьмилетнего возраста на 25–35 %. Отмечено, что боковые побеги на конце очень тонкие и ежегодно весной последнее их звено (толщиной до 2 мм) засыхает и отпадает. Подобное отмечено при культивировании многими авторами [9, 11]. Мелкоплодные формы растений унаби имеют колючки длиной до 3 см. Листья Zizyphus jujuba простые, с короткими черешками или без них, редко с мелкими прилистниками.

Растительные организмы с мелкими плодами и меньшими сроками роста и вегетации обладают преимуществами по пределам выносливости. Кустарник *Z. јијива*, в условиях экспериментальных посадок на каштановых почвах Волгоградской области, имеет блестящую яркую зелень листвы с оригинальной кроной и декоративным эффектом в фазах цветения и плодоношения.

В зимний период и весной растения эффектно смотрятся благодаря угловато-извилистым голым ветвям. Яйцевидная, широко яйцевидная, шаровидная и раскидистая формы кроны, окраска листьев даёт возможность использования растений *Z. jujuba*, как декоративных в сочетаниях (*Viburnum lantana* L., *Cotinus coggygria* Scop.). Изучение крон *Zizyphus jujuba* показало, что они образуют преимущественно ажурную конструкцию.

У растений унаби 15-летнего возраста в условиях Волгограда (светлокаштановые почвы) диаметр штамба у корневой шейки 5–7 см, высота до 2,3–3,5 м, в Камышине (каштановые почвы) 4–5-летние растения имеют высоту 1,5–1,6 м. Снижение ростовых параметров связано с приспособлением к условиям, отличающимся от оптимальных. На этом фоне более достаточный уровень устойчивости наблюдался у мелкоплодных сортов.

У растений 4 вида побегов: основные ростовые (скелетные), коленчатоизогнутые (боковые), утолщено-укороченные и репродуктивные опадающие (на утолщено-укороченных побегах и на основных ростовых) (табл. 2).

Таблица 2 **Система побегов** *Zizyphus jujuba*, возраст 8 лет

	Количество побегов, шт./% от общего количества					
Сорт	скелетные (основные ростовые)	коленчато- изогнутые (боковые)	утолщено- укороченные	репродуктив- ные опадающие		
'Южанин'	3/0,64	44/9,36	98/20,85	325/69,15		
'Та-ян-цзао'	3/0,64	43/9,13	97/20,59	328/69,64		
'Финик'	4/0,68	46/7,81	118/20,03	421/71,48		
'Дружба'	4/0,71	45/7,98	125/22,16	390/69,15		
'Темрюкский'	4/0,66	52/8,59	135/22,31	414/68,43		
'Сочинский'	5/0,80	61/9,76	140/22,40	418/66,88		

Унаби является засухоустойчивым кустарниковым интродуцентом и обладает экологической пластичностью в различных климатических условиях.

Плодоносить начинает с 2-летнего возраста. Неоднородные условия снабжения элементами питания и влагой, специфические условия микроклимата в пределах кроны приводят не только к разному количеству плодов, но и к формированию семян разного качества (табл. 3, 4).

В условиях каштановых почв $(50^{\circ}4'-50^{\circ}5'$ с. ш. и $45^{\circ}22'-45^{\circ}23'$ в. д.) семена мелкоплодных сортов имели высокий (66,1-97,2%) показатель доброкачественности.

Таблица 3 **Характеристика плодоношения** *Zizyphus jujuba*, возраст 10 лет

	'Сочинский'			
Показатели	$\frac{\lim *}{X \pm s}$	c. v., %		
Масса: плодов на куст, кг	7,18–8,55 3,00–4,11			
одного плода, г одного семени, г	$ 3,21 \pm 0,19 0,40-0,56 0,50 \pm 0,04 $	21 14		
Выход мякоти, %	79–84	-		
Размеры плода, <i>см</i> : ширина	$\begin{array}{c} 1.75 \pm 2.42 \\ 1.80 \pm 0.07 \\ 2.15 \pm 2.03 \end{array}$	18 12		
длина	$\begin{array}{c} 2,15 - 2,93 \\ 2,21 \pm 0,05 \end{array}$	12		
Размеры семени, см:	0.68 - 0.77 0.70 ± 0.04	17		
ширина длина	$\begin{array}{c} 1,27 - 1,39 \\ 1,30 \pm 0,09 \end{array}$	21		

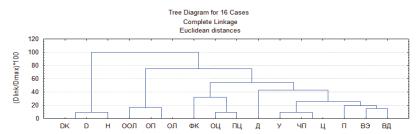
Примечание: * – lim – минимальное и максимальное значение признака, $X \pm s$ – среднее и его ошибка, с.у., % – коэффициент вариации

Таблица 4

Формирование семян Zizyphus jujuba (каштановые почвы, 50°4'-50°5'с. ш. и 45°22'-45°23' в. д.)

Название сорта	Годы исследований				Сронцаа
	2013	2014	2015	2016	Средняя
'Финик'	$30,7 \pm 1,22$	$42,6\pm1,70$	$34,6\pm1,56$	$41,5\pm 2,07$	37,3 ±1,49
'Сочинский'	66,1 ±2,97	92,5 ±4,16	$67,5 \pm 3,37$	$91,8 \pm 3,67$	$79,5 \pm 3,58$
'Темрюкский'	69,4 ±3,47	97,2 ±4,86	74,7 ±2,98	96,9 ±4,37	84,6 ±4,03

Интегральная оценка толерантности *Z. jujuba* показала, что сортовое разнообразие унаби дифференцировано по реакции к лимитирующим стресс-факторам (табл. 5).


Таблица 5 Толерантность к лимитирующим стресс-факторам

11		C		
Название сортов	к засухе	к засолению	к морозу	Среднее
'Сочинский', 'Темрюкский' (мелкоплодные сорта)	4,8 ±0,13	3,5 ±0,15	3,9 ±0,13	4,1
'Дружба', 'Финик' (среднеплодные сорта)	4,4 ±0,14	3,2 ±0,17	3,0 ±0,14	3,5
'Та-ян-цзао', 'Южанин' (крупноплодные сорта)	4,0 ±0,14	3,1 ±0,12	2,5 ±0,12	3,2
HCP ₀₅	0,13	0,09	0,12	0,11

Примечание: * – слабая – 2; средняя – 3; высокая – 4–5

По результатам оценки толерантности к стресс-факторам в условиях северной границы культивирования (каштановые почвы) сорта мелкоплодной группы ('Сочинский', 'Темрюкский') характеризуются как экологически пластичные растения. Это обусловлено их состоянием и реакциями на ограничивающие факторы в годы исследований в установленных для них пределах существования и подтверждается на основе кластерного анализа комплекса показателей (рис. 1).

Объединение в кластеры (однородные группы) качественных и количественных признаков базируется на выяснении близости на основе теоретических предпосылок отнесения к одной совокупности по типам качественных (баллы, ранги) и количественных (количество, размеры, частота, доля, и др.) признаков. Кластерный анализ даёт возможность комплексно оценить перспективность древесных растений для повышения биоразнообразия деградированных территорий.

ВД – водный дефицит листьев в период засухи, %, ВЭ – состояние коллоидноосмотических свойств протоплазмы по относительному выходу электролитов, Н- высота
ствола, м, D – диаметр ствола, см, DК – диаметр кроны, м, П – прирост побегов, см, Ц –
число цветов (соцветий) на метр-ветку, ЧП – число плодов (соплодий) на метр-ветку, У –
урожайность семян (плодов) с растения, г, Д – доброкачественность семян, %, ФК – форма
кроны, ОЛ – окраска листвы в течение вегетационного периода, ПЦ – продолжительность
цветения, ОЦ – окраска пветов, ОП – окраска плодов, ООЛ – осенняя окраска листьев

Рис. 1. Кластерный анализ комплекса показателей

Выводы. Установлено, что рост, формирование габитуса и побегообразовательную способность у сортов *Z. jujuba* в условиях экспериментальных посадок (Волгоград, $48^{\circ}37^{\circ}-48^{\circ}38^{\circ}$ с. ш. и $44^{\circ}12^{\circ}-44^{\circ}13^{\circ}$ в. д.; Камышин, $50^{\circ}4^{\circ}-50^{\circ}5^{\circ}$ с. ш. и $45^{\circ}22^{\circ}-45^{\circ}23^{\circ}$ в. д.) ограничивают засухи и минимальные/максимальные (-37/+40,1 °C градусы) температуры. По репродуктивным способностям установлено преимущество растительных организмов с мелкими плодами.

Интегральная оценка толерантности к стресс-факторам в условиях северной границы культивирования (каштановые почвы) характеризует сорта мелкоплодной группы ('Сочинский', 'Темрюкский') как экологически пластичные растения. Это обусловлено их состоянием и реакциями на ограничивающие факторы в годы исследований в установленных для них пределах существования и подтверждается на основе кластерного анализа комплекса показателей.

Исследования выполнены по теме Государственного задания № 0713-2019-0004 ФНЦ агроэкологии РАН.

Библиографический список

- 1. Кузнецов В. В., Дмитриева Г.А. Физиология растений: учебник. М.: Абрис, 2011. 783 с.
- 2. Полевой В. В. Практикум по росту и устойчивости растений. Л., 2001. 212 с.
- 3. Свинцов И.П., Семенютина В.А. Методологические основы изучения растительных организмов в условиях интродукции // Современная наука: актуальные проблемы теории и практики. Серия естественные и технические науки. № 9-10. 2014. С. 42-47.
- 4. Семенютина А.В. Дендрофлора лесомелиоративных комплексов / под ред. И.П. Свинцова. Волгоград: ВНИАЛМИ, 2013. 266 с.
- 5. Семенютина А.В., Костюков С.М., Кащенко Е.В. Методы выявления механизмов адаптации древесных видов в связи с их интродукцией в засушливые регионы / Успехи современного естествознания. -2016. -№ 2. -C. 103-109.
- 6. Семенютина А.В., Хужахметова А.Ш., Семенютина В.А., Свинцов И.П. Метод оценки пигментного комплекса древесных растений как индикатор адаптации к засушливым условиям [Электронный ресурс] // Наука. Мысль. -2018. -№ 8(1). -C. 69-82. -URL: https://doi.org/10.25726/ 10.5072/5137.2018.20.94.006 (Дата обращения 10.09.2018).
- 7. Awasthi O.P., More T.A. Genetic diversity and status of *Zizyphus* in India / Acta Hortic. Vol. 840. P. 33-40 doi: 10.17660/ActaHortic.2009.
- 8. Cui N., Du T., Kang S., Li F., Zhang J., Wang M. Regulated deficit irrigation improved fruit quality and water use efficiency of pear-jujube trees // Agricultural Water Management. 2008. P. 489-97.
- 9. Denny E.G. Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications // International Journal of Biometerology. 2014. –Vol. 58. P. 591-601.
- 10. Diaz S., Cabido M., Casanoves F. Plant functional traits and environmental filters at a regional scale // Journal of Vegetation Science. 1998. P. 113-22. doi: 10.2307/3237229. 11. Gao W.H., Li X.G., Wang C.Z. Variation in Morphology of Jujube 'Muzao' (*Ziziphus jujuba* Mill.) in the Losses Plateau of China // Acta Hor-ticulturae. 2011. 840. P. 197-202.
- 12. Liu M.J., Zhao Z. H. Germplasm resources and production of jujube in China // Acta Hortic. Vol. 840. P. 25-32 doi: 10.17660/ActaHortic.2009.840.1 https://doi.org/10.17660/ActaHortic.2009.840.1
- 13. Qi X.Y., Zhang X.Q., Chen Z.L., Xue H., Liu W., Xie L. The effect of NaCl stress on the subculture of test-tube seedlings of chinese jujube 'Muzao' // Acta Hortic. Vol. 993. P. 143-148 doi: 10.17660/ActaHortic.2013.993.21.
- 14. Semenyutina A.V., Podkovyrov I.U., Semenyutina V.A. Environmental efficiency of the cluster method of analysis of greenery objects decorative advantages // Life Science Journal. 2014. Vol.11(12s). P. 699-702.
- 15. Wang Z.H., Xue J., Liu L.P., Deng X.M., Wei T.J. Effects of freezing methods and storage temperatures on the flesh firmness of jujube fruits // Acta Hortic. Vol. 840. P. 505-512 doi: 10.17660/ActaHortic.2009.840.71https://doi.org/10.17660/ActaHortic.2009.840.71.

ADAPTIVE POTENTIAL OF UNABI CULTIVARS IN THE CONDITIONS OF VOLGOGRAD REGION

Semenyutina V. A., Svintsov I. P.

Federal State Budgetary Scientific Institution
"Federal Scientific Centre of Agroecology, Complex Melioration
and Protective Afforestation of the Russian Academy of Sciences",
c. Volgograd, Russia, e-mail: VSem89@mail.ru

One of the economically important plants for the south of Russia is unabi (*Zizyphus jujuba*), which is undergoing environmental testing in Volgograd region. The goal is to

identify the ecological ranges of propagation during the testing of unabi plant organisms. The objects of research are *Z. jujuba* cultivars obtained from the Russian Research Institute of Floriculture and Subtropical Crops (large-fruited – 'Ta-yang-tszao', 'Yuzhanin'; middle-fruited – 'Druzhba', 'Finik'; small-fruited – 'Sochinsky', 'Temruksky'). It was established that growth, habit formation and shoot-forming ability of the studied *Z. jujuba* plant organisms under conditions of experimental plantings (Volgograd, 48°37'–48°38' N and 44°12'–44°3' E; Kamyshin, 50°4'–50°5' N and 45°22'–45°23' E) limit droughts, minimum/maximum (–37/+40.1 °C) temperatures. Reproductive abilities, tolerance to low temperatures and the degree of drought tolerance established the advantage of cultivar-samples with small fruits. Based on the generalization of materials and histograms of the distribution of signs groups, a forecast of the habitats expansion during the creation of artificial ecosystems is possible.

Key words: ecological plasticity, tolerance limits, *Z. jujuba* (unabi), mold diversity, environmental factors, area of distribution, growth and development, reproductive ability.