Глава 6.

АГРОХИМИЯ И ПОЧВОВЕДЕНИЕ

УДК 631.415.2:633.72(213.1:470.62)

doi: 10.31360/2225-3068-2018-66-160-167

ВЗАИМОСВЯЗЬ ИЗМЕНЕНИЙ КИСЛОТНО-ОСНОВНЫХ СВОЙСТВ БУРЫХ ЛЕСНЫХ КИСЛЫХ ПОЧВ СУБТРОПИКОВ РОССИИ В ХОДЕ АГРОГЕННОЙ АЦИДИЗАЦИИ ПОД КУЛЬТУРОЙ ЧАЯ

Козлова Н. В., Керимзаде В. В.

Федеральное государственное бюджетное научное учреждение «Всероссийский научно-исследовательский институт цветоводства и субтропических культур», г. Сочи, Россия, e-mail: agro-pochva@vniisubtrop.ru.

Проведено изучение сопряжённых изменений показателей кислотно-основного состояния бурых лесных кислых почв, достигших разной степени ацидизации в итоге 27-летнего применения различных доз минеральных удобрений (NPK) в многофакторном полевом опыте на культуре чая, в условиях влажных субтропиков России. Показано, что изучаемые показатели находятся между собой в тесной прямой или обратной взаимосвязи ($r = \pm 0.89-0.99$). Характер взаимосвязанных изменений представлен графически и аппроксимирующими линейными функциями. Установлено, что снижение р $H_{\rm KCI}$ на 0,1 единицу в среднем соответствовало: росту гидролитической и обменной кислотностей на 1,66 и 0,88 мг-экв/100 г, подвижного алюминия на 7,92 мг/100 г; снижению суммы обменных кальция и магния на 0,93 мг-экв/100 г и степени насыщенности основаниям на 3,82 %.

Ключевые слова: бурые лесные кислые почвы, чайные плантации, кислотноосновные свойства, минеральные удобрения, ацидизация, влажные субтропики России.

Кислотно-основные свойства почв являются определяющими при оценке их чаепригодности и уровня потенциального плодородия для культуры чая [3, 10]. При этом они могут достаточно быстро и существенно изменяться в процессе возделывания чайных плантаций. Подкисление почв (ацидизация) при длительном возделывании чая характерно и проявляется в разной степени на разных типах почв в различных чаепроизводящих регионах мира [2, 4, 6, 11–15], что связано с особенностями технологии возделывания чая. Многими исследованиями показано [4–8, 11, 12, 14], что ведущую роль в этом процессе играют (как напрямую, так и косвенно) азотные удобрения, как правило, физиологически кислые, которые применяются на исходно кислых почвах

без нейтрализации. С точки зрения плодородия почв применительно к культуре чая (типичного ацидо- и алюмофила) ацидизация может рассматриваться положительно. Однако она является признаком нарушения генететически обусловленного равновесия в почве, а в сильной степени может привести к серьезным трансформационным процессам [5, 11, 13]. Поэтому кислотно-основные свойства почв чайных плантаций в первую очередь входят в комплекс критериев оценки агрогенных изменений их общего состояния [9].

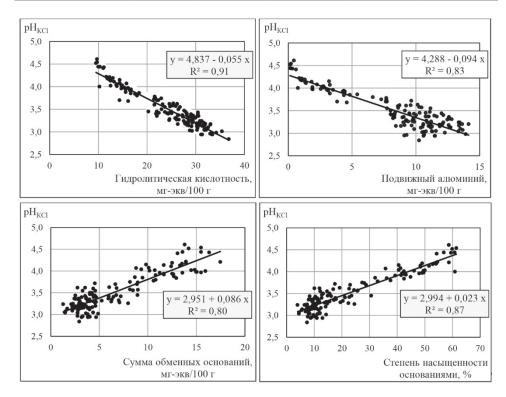
Детальное изучение процессов изменения кислотно-основного состояния почв чайных плантаций в зависимости от интенсивности и длительности их эксплуатации в условиях чаепроизводящего региона России (Черноморское побережье Краснодарского края) проведено на базе длительного многофакторного полевого опыта с удобрениями. Опыт заложен на одной из лучших чайных почв – бурой лесной кислой (г. Сочи, пос. Уч-Дере, ЗАО «Дагомысчай»), на молодой чайной плантации 1983 г. посадки. В период 1986–2012 гг. изучены 16 вариантов различных сочетаний доз NPK в широком диапазоне N 0–600 Р 0–180 К 0–150 кг д.в./га. В результате 27-летней эксплуатации с различными схемами применения удобрений варианты опыта представляют собой модельные миниплантации, почвы которых достигли различного уровня плодородия и разной степени ацидизации.

Механизмы развития ацидизации и связанных с ней процессов трансформации комплекса других структурно-функциональных свойств бурых лесных кислых почв чайных плантаций раскрыты в серии работ [5, 8, 11]. Показано, что ацидизация проявляется в существенном повышении их потенциальной (гидролитической) и обменной кислотностей (и, соответственно, снижении показателей рН). При этом рост кислотоопределяющих компонентов происходит за счёт органических компонентов на фоне накопления гумуса и повышения подвижности и агрессивности гумусовых кислот, а также за счёт алюминия (определяющего на 99 % обменную кислотность) в результате его биогенного накопления и повышения подвижности. Это сопровождается снижением содержания обменных кальция и магния, их доли в общей сумме обменных катионов (при соответствующем росте доли алюминия) и степени насыщенности почв основаниями. Итоговые изменения комплекса кислотно-основных показателей за 27-летний период и средняя скорость этих изменений в зависимости от доз и общей нагрузки удобрениями, а также их оценка с точки зрения повышения уровня потенциального плодородия почв и продуктивности чайных плантаций в сопоставлении с целесообразным и экологически безопасным для почв уровнем ацидизации подробно рассмотрены в ранее опубликованных работах [6, 7].

Наличие в пределах одного опытного участка и исходно одного типа почв большой группы модельных миниучастков (вариантов опыта), почва которых, постепенно изменяясь, приобрела в разной степени отличные от исходных (и между собой) кислотно-основные свойства, позволило установить характер взаимосвязи сопряжённых изменений в виде математических функций. Это интересно с теоретической и практической точек зрения, и представлено в данной работе.

Был проведён анализ блока данных, характеризующих кислотноосновные свойства 150 образцов почв модельных чайных плантаций с различной степенью ацидизации, а также почвы леса (фонового участка), охватывающих широкий диапазон значений изучаемых показателей в выборке (табл. 1). Лабораторные исследования почвенных образцов проведены по общепринятым методикам [1]: рН_{КСІ} – потенциометрически; гидролитическая кислотность – по Каппену; подвижный алюминий – по Соколову; обменные кальций и магний – трилонометрически; степень насыщенности основаниями – расчётная. Обработка экспериментальных данных проведена в программе Microsoft Excel, для представления взаимосвязей показателей выбраны аппроксимирующие линейные функции и корреляции.

Tаблица I Диапазоны значений в анализируемой выборке (n = 150)


Показатели	pH _{KCl}	Гидролитиче- ская кислот- ность	Подвижный алюминий Сумма обменных оснований		Степень насыщенно- сти основа-
			ниями, %		
Минимум	2,84	9,52	0,13	1,27	3,95
Максимум	4,61	36,79	14,13	17,47	61,36

Как уже отмечалось ранее, изменения показателей кислотно-основного состояния бурых лесных кислых почв в процессе ацидизации при возделывании чая тесно взаимосвязаны (находятся между собой в прямой или обратной связи), что подтверждает корреляционный анализ выборки данных (табл. 2), а изменения показателей pH_{KCI} являются результатом и отражением изменения всего комплекса кислотно-основных свойств.

Характер связи сопряжённых изменений показателей р $H_{\rm KCl}$ с другими показателями этой группы представлен на рисунке 1. Линии аппроксимации показывают, что снижение р $H_{\rm KCl}$ на 0,1 единицу в среднем соответствовало: росту гидролитической кислотности на 1,66 мг-экв/100 г, обменной кислотности и подвижного алюминия на 0,88 мг-экв/100 г (или 7,92 мг Al/100 г); снижению суммы обменных кальция и магния на 0,93 мг-экв/100 г и степени насыщенности основаниям на 3,81 %.

Таблица 2 Коэффициенты корреляции между кислотно-основными показателями бурых лесных кислых почв

Показатели	pH _{KCl}	Гидроли- тическая кислот- ность	Подвиж- ный алю- миний	Сумма обменных оснований	Степень насыщенности основаниями
Гидролитическая кислотность	-0,95	1,00			
Подвижный алюминий	-0,91	0,93	1,00		
Сумма обменных оснований	0,89	-0,91	-0,91	1,00	
Степень насыщенности основаниями	0,93	-0,95	-0,95	0,99	1,00

Рис. 1. Связь изменений показателей pH_{KCl} с другими кислотно-основными свойствами бурых лесных кислых почв в ходе ацидизации под культурой чая $(R^2-$ достоверность аппроксимации)

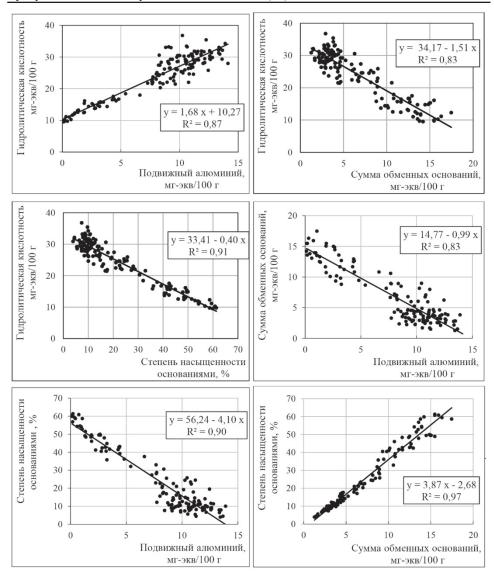
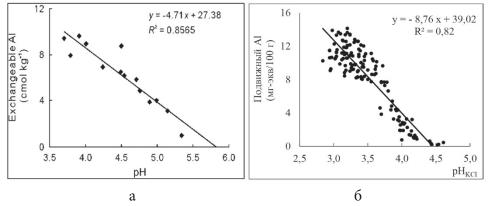



Рис. 2. Взаимосвязи различных пар показателей кислотно-основного состояния бурых лесных кислых почв модельных чайных плантаций $(R^2-$ достоверность аппроксимации)

Так, к примеру, рост содержания подвижного алюминия в почве на $10~\rm Mr$ -экв/ $100~\rm r$ (или $90~\rm Mr$ / $100~\rm r$) будет соответствовать росту гидролитической кислотности в среднем на $16.8~\rm Mr$ -экв/ $100~\rm r$, снижению рН $_{\rm KCl}$ на $0.94~\rm единицы$, снижению суммы обменных оснований на $9.9~\rm Mr$ -экв/ $100~\rm r$ и степени насыщенности основаниями на $40.5~\rm \%$. Кроме того, можно ориентировочно оценить значение любого из показателей, зная значение любого другого. Например, если рН $_{\rm KCl}$ почвы

3 единицы, то гидролитическая кислотность будет близка к 33 мг-экв/100 г, обменный алюминий — около 13 мг-экв/100 г (117 мг/100 г), сумма обменных оснований — около 2 мг-экв/100 г, и т. д. Расчётные значения будут тем ближе к фактическим, чем теснее связь показателей и выше достоверность аппроксимации (R^2) .

Хотя формирование и структура кислотно-основных свойств носят общий характер для различных почв, вклад отдельных кислотоопределяющих компонентов и взаимосвязи между показателями по-видимому различны и индивидуальны. В одной из публикаций, посвящённых подкислению почв при выращивании чая в восточном Китае [15], обсуждается взаимосвязь между содержанием обменного (подвижного) алюминия и pH почв, классифицированных авторами как Alfisols (альфисоли) на основе таксономии почв США) (рис. 3а). Алюминий экстрагировали тем же раствором (1,0 моль/л КСІ), что и по методу Соколова; рН почвы определяли в суспензии почвы с деионизированной водой в соотношении 1:2,5 (в отличие от $pH_{_{\!K\!C\!I}}$ в нашем случае). Это позволяет провести некоторое сравнение со взаимосвязью показателей рН и алюминия в изучаемых нами почвах (рис. 3б). Расчёты показывают, что в случае альфисолей Китая снижение рН на 1 единицу сопровождалось ростом содержания подвижного алюминия на 4,71 мг-экв/100 г (cmol/kg), а в случае бурых лесных кислых почв субтропиков России – на 8,76 мг-экв/100 г. Можно предположить, что такие различия связаны с различным вкладом алюминия в формирование общей кислотности сравниваемых почв, повидимому с большей долей органических кислотоопределяющих компонентов в альфисолях Китая. Хотя данное сравнение в определённой мере условно (из-за разницы методических нюансов), оно показывает, что количественный характер взаимосвязей кислотно-основных показателей зависит от генезиса и типовой принадлежности почвы.

Рис. 3. Взаимосвязь между обменным (подвижным) алюминием и рН в почвах чайных плантаций: а) альфисоли (Alfisols) восточного Китая (рис. взят из [15]); б) бурые лесные кислые почвы влажных субтропиков России

Таким образом, в результате анализа блока сопряжённых данных длительного полевого многофакторного опыта с удобрениями получены графические и аппроксимирующие математические модели, корреляционные зависимости, отражающие характер взаимосвязи показателей кислотно-основного состояния бурых лесных кислых почв и их изменений в ходе агрогенной ацидизации под культурой чая в условиях влажных субтропиков России. Математические взаимозависимости между различными парами показателей позволяют рассчитать их ориентировочные фактические значения, а также фактические или прогнозируемые изменения всего комплекса этих свойств, имея результаты по одному из показателей.

Библиографический список

- 1. Агрохимические методы исследования почв. М.: Наука, 1975. 656 с.
- 2. Беседина Т.Д. Агрогенная трансформация почв Черноморского побережья Северо-Западного Кавказа при использовании под субтропические культуры: дис. ... д-ра с.х. наук. – Краснодар, 2004. – 313 с.
- 3. Бушин П.М., Беседина Т.Д., Копылов С.С. О критериях бонитировки почв чайных плантаций субтропиков России // Цветоводство, субтропические и плодовые культуры на Юге России: сб. науч. тр. Сочи: ВНИИЦиСК, 1994. Т. 38. С. 128-141.
- 4. Голетиани Г.И Влияние длительного применения минеральных удобрений на свойства краснозёмной почвы и урожайность чайных плантаций // Почвоведение. -1958. -№ 2. C. 23-30. -ISSN: 0032-180X.
- 5. Козлова Н.В. Состояние бурых лесных кислых почв чайных плантаций при длительном применении минеральных удобрений в субтропиках России: автореф. дис. ... канд. б. наук. М., 2008. 24 с.
- 6. Козлова Н.В. Культура чая и ацидизация почв в условиях субтропиков России: агрохимические и экологические аспекты // Новые и нетрадиционные растения и перспективы их использования: матер. XIII Междунар. конф., Сочи, 4-8 июня 2018 г. М.: РУДН, 2018. С. 510-515. ISBN: 978-5-209-08756-4.
- 7. Козлова Н.В., Керимзаде В.В. Скорость агрогенной ацидизации бурых лесных почв чайных плантаций в условиях влажных субтропиков России // Плодоводство и ягодоводство России. -2017.-T.51.-C.259-267.-ISSN: 2073-4948.
- 8. Козлова Н.В., Малюкова Л.С. Влияние длительного применения минеральных удобрений на кислотно-основное состояние бурых лесных кислых почв чайных плантаций субтропиков России // Агрохимия. 2007. № 9. С. 1-7. ISSN: 0002-1881.
- 9. Козлова Н.В., Малюкова Л.С. Методический подход к оценке бурых лесных кислых почв РФ по степени агрогенных изменений // Актуальные вопросы плодоводства и декоративного садоводства в начале XXI века: сб. науч. тр. Сочи: ВНИИЦиСК, 2014. С. 413-421. ISBN: 978-5-904533-21-2.
- 10. Малюкова Л.С., Козлова Н.В., Притула З.В. Система удобрений плантаций чая в субтропиках России. Сочи: ВНИИЦиСК, 2010. 45 с. ISBN: 978-5-904533-09-0.
- 11. Малюкова Л.С., Рындин А.В., Козлова Н.В. Особенности агрогенной трансформации бурых лесных кислых почв чайных плантаций // Вестник РАСХН. -2008. -№ 4. -C. 26-27. -ISSN: 0869-3730.

- 12. Ониани Д.И. Влияние длительного удобрения чайных плантаций на некоторые свойства краснозёмных и подзолистых почв // Субтропические культуры. 1960. N = 2. C. 47-60.
- 13. Alekseeva T., Alekseev A., Xu Ren-Kou, Zhao An-Zhen, Kalinin P. Effect of soil acidification induced by a tea plantation on chemical and mineralogical properties of Alfisols in eastern China // Environmental Geochemistry and Health. 2011. Vol. 33. Issue. 2. P. 137-148. (Китай) doi: 10.1007/s10653-010-9327-5.
- 14. Owuor P.O., Othieno C.O., Kamau D.M., Wanyoko J.K. Effects of long-term fertilizer use on a high-yielding tea clone AHPS15/10: soil pH, mature leaf nitrogen, mature leaf and soil phosphorus and potassium // International Journal of Tea Science.— 2011-2012. Vol. 8(1). P. 15-51. (Кения) ISSN: 0972-554X.
- 15. Wang Hui, Xu Ren-Kou, Wang Ning, Li Xing-Hui. Soil Acidification of Alfisols as Influenced by Tea Cultivation in Eastern China // Pedosphere. 2010. Vol. 20. Issue. 6. P. 799-806. (Китай). ISSN: 1002-0160/CN 32-1315/P.

THE INTERRELATION OF CHANGES IN ACID-BASIC PROPERTIES OF ACID BROWN FOREST SOILS IN THE RUSSIAN SUBTROPICS DURING AGROGENIC ACIDIZATION UNDER TEA CULTURE

Kozlova N. V., Kerimzade V. V.

Federal State Budgetary Scientific Institution
"Russian Research Institute of Floriculture and Subtropical Crops",
c. Sochi, Russia, e-mail: agro-pochya@yniisubtrop.ru

The paper studied conjugate changes in the acid-base state of acid brown forest soils that have reached a different degree of acidification as a result of a 27-year application of mineral fertilizers (NPK) in various doses in a multifactorial field experiment on tea culture, in the Russian humid subtropics. It is shown that the studied indicators are in close direct or inverse relationship ($r = \pm 0.89 - 0.99$). The nature of the interrelated changes is represented graphically and by approximating linear functions. It was found that a decrease in pH_{KCl} by 0.1 unit on average corresponded to the following: to the growth of hydrolytic and metabolic acidities by 1.66 and 0.88 mg-eq/100 g, mobile aluminum by 7.92 mg/100 g; to a decrease in the amount of exchangeable calcium and magnesium by 0.93 mg-eq/100 g and to a saturation degree of bases by 3.82 %.

Key words: acid brown forest soils, tea plantations, acid-base properties, mineral fertilizers, acidification, Russian humid subtropics.